X-Ray Structures of the Universal Translation Initiation Factor IF2/eIF5B Conformational Changes on GDP and GTP Binding
نویسندگان
چکیده
X-ray structures of the universal translation initiation factor IF2/eIF5B have been determined in three states: free enzyme, inactive IF2/eIF5B.GDP, and active IF2/eIF5B.GTP. The "chalice-shaped" enzyme is a GTPase that facilitates ribosomal subunit joining and Met-tRNA(i) binding to ribosomes in all three kingdoms of life. The conserved core of IF2/eIF5B consists of an N-terminal G domain (I) plus an EF-Tu-type beta barrel (II), followed by a novel alpha/beta/alpha-sandwich (III) connected via an alpha helix to a second EF-Tu-type beta barrel (IV). Structural comparisons reveal a molecular lever, which amplifies a modest conformational change in the Switch 2 region of the G domain induced by Mg(2+)/GTP binding over a distance of 90 A from the G domain active center to domain IV. Mechanisms of GTPase function and ribosome binding are discussed.
منابع مشابه
Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms
Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while ...
متن کاملeIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining.
eIF5B is a eukaryal translational GTPase that catalyzes ribosomal subunit joining to form elongation-competent ribosomes. Despite its central role in protein synthesis, the mechanistic details that govern the function of eIF5B or its archaeal and bacterial (IF2) orthologs remained unclear. Here, we present six high-resolution crystal structures of eIF5B in its apo, GDP- and GTP-bound form that,...
متن کاملTranslation initiation without IF2-dependent GTP hydrolysis
Translation initiation factor IF2 is a guanine nucleotide-binding protein. The free energy change associated with guanosine triphosphate hydrolase (GTPase) activity of these proteins is believed to be the driving force allowing them to perform their functions as molecular switches. We examined role and relevance of IF2 GTPase and demonstrate that an Escherichia coli IF2 mutant bearing a single ...
متن کاملUncoupling of Initiation Factor eIF5B/IF2 GTPase and Translational Activities by Mutations that Lower Ribosome Affinity
Translation initiation factor eIF5B/IF2 is a GTPase that promotes ribosomal subunit joining. We show that eIF5B mutations in Switch I, an element conserved in all GTP binding domains, impair GTP hydrolysis and general translation but not eIF5B subunit joining function. Intragenic suppressors of the Switch I mutation restore general translation, but not eIF5B GTPase activity. These suppressor mu...
متن کاملInitiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation.
Initiation factors IF2 in bacteria and eIF2 in eukaryotes are GTPases that bind Met-tRNA(i)(Met) to the small ribosomal subunit. eIF5B, the eukaryotic ortholog of IF2, is a GTPase that promotes ribosomal subunit joining. Here we show that eIF5B GTPase activity is required for protein synthesis. Mutation of the conserved Asp-759 in human eIF5B GTP-binding domain to Asn converts eIF5B to an XTPas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 103 شماره
صفحات -
تاریخ انتشار 2000